Multilinear Algebra and Tensor Decomposition

Qibin Zhao
Tensor Learning Unit RIKEN AIP

2018-6-2 @ Waseda University

Self-Introduction

- 2009, Ph.D. in Computer Science, Shanghai Jiao

Tong University
-2009-2017, RIKEN Brain Science Institute
-2017 - Now, RIKEN AIP

- Research Interests:
- Brain computer interface, brain signal processing
- Tensor decomposition and machine learning

Self-Introduction

Brain computer interface

Self-Introduction

Ructs Cenver for Adranced intel igense Protect

Tenso Learning Unit

 muttinear latest variable modd, tersor regresion and clamification, tensor networks dee
 tenser lesming, and syyetia tesoor samiag, wh af to faciza.e the leanirg tom nigh and efficient tescor haming alyerithes supported by heoretikal princples. The hovel apoltatios in compter vilon ind bain dita awsintis will tho be exporedto providenen

Main Research Field

Compter icience

Related Research Fields
Engreering / Nurowience \& Bhiwio / Muthenstics

Hesearch sabjects

- Tensor Decompastion and lersor Nietworks
- Byyeisan Thnsortesting
- Oesp Tenar Lemina
cencuat irtormison
Nhoobssht 1-cheme Nitur Bulldine. 15 ch foor $1-1+1$ Nibcorbush, Ownku, Bkipo 103-cone7, hapar Teet 41 . (Q P3. $6215 \cdot 2373$ Fax: $+31-(1) 3)-371-7 m 2$
, Mating tee Nr
Emal: qith.zhes [at riker.jp

Revind lints

- Tercor Leamisy Unt:|RNEN Cruer for Alanked intrilgorce: Project

materi inft

-Progams tor tailor forearchers
-kaccr Ilabubi rellom, Prognt-

- teb Coporiunition
- Raxer menarch
- Mress Reclesen
- Mublication
- bader of Luberanoy ikeds.

Tensor Learning Unit
Unit Leader: Dr. Qibin Zhao

Tensors are high-dimensional generalizations of vectors and matrices, which can provide a natural and scalable representation for multi-dimensional, multi-relational or multi-aspect data with inherent structure and complex dependence. In our team, we investigate the various tensor-based machine learning models, e.g., tensor decomposition, multilinear latent variable model, tensor regression and classification, tensor networks, deep tensor learning, and Bayesian tensor learning, with aim to facilitate the learning from highdimensional structured data or large-scale latent parameter space. In addition, we develop the scalable and efficient tensor learning algorithms supported by the theoretical principles, with the goal to advance existing machine learning approaches. The novel applications in computer vision and brain data analysis will also be exploited to provide new insights into tensor learning methods.

Opening Positions

(1)	2	3
POSTDOCTORAL RESEARCHER	TECHNICAL STAFF	RESEARCH INTERN
Doctoral degree	Technical support for researchers	Ph.D students are preferable

We are seeking talented and creative researchers who are willing to solve the challenging problems in machine learning. For research topics, please refer to the bottomright side. If you are interested in joining our team, please contact us (see the top-right side).

Contact Information Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuoku, Tokyo103-0027, Japan Email: qibin.zhao@riken.jp

Research Field

Computer Science

Related Fields

Machine Learning
Computer Vision
Neuroscience
Research Subjects

* 荣 T ensor

Decomposition

* 畨Tensor Networks
* * Tensor Regression and Classification
* * Deep Tensor Learning
* *Bayesian Tensor Learning

Outline

- Vector and linear algebra
- Matrix and its decomposition
-What is tensor?
- Basic operations in tensor algebra
- Classical tensor decomposition
+CP Decomposition
+Tucker Decomposition

Vectors

- We can think of vectors in two ways:
- Points in a multidimensional space with respect to some coordinate system
- translation of a point in a multidimensional space ex., translation of the origin $(0,0)$

Dot Product or Scalar Product

- Dot product is the product of two vectors
- Example:

$$
\mathbf{x} \cdot \mathbf{y}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}=s
$$

- It is the projection of one vector onto another

$$
\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos \theta
$$

Dot Product or Scalar Product

- Commutative:

$$
\begin{aligned}
\mathbf{x} \cdot \mathbf{y} & =\mathbf{y} \cdot \mathbf{x} \\
(\mathbf{x}+\mathbf{y}) \cdot \mathbf{z} & =\mathbf{x} \cdot \mathbf{z}+\mathbf{y} \cdot \mathbf{z}
\end{aligned}
$$

Distributive:

- Linearity

$$
\begin{aligned}
(c \mathbf{x}) \cdot \mathbf{y} & =c(\mathbf{x} \cdot \mathbf{y}) \\
\mathbf{x} \cdot(c \mathbf{y}) & =c(\mathbf{x} \cdot \mathbf{y}) \\
\left(c_{1} \mathbf{x}\right) \cdot\left(c_{2} \mathbf{y}\right) & =\left(c_{1} c_{2}\right)(\mathbf{x} \cdot \mathbf{y})
\end{aligned}
$$

Norms

Euclidean norm (sometimes called 2-norm):

$$
\|\mathbf{x}\|=\|\mathbf{x}\|_{2}=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

The length of a vector is defined to be its (Euclidean) norm.
A unit vector is of length 1.

Singular Value Decomposition

$\mathrm{D}=\mathrm{USV}^{\top}$

- A matrix $\mathbf{D} \in \mathbb{R}^{\mathrm{I}_{1} \mathrm{XI}}$. has a column space and a row space
- SVD orthogonalizes these spaces and decomposes D

$$
\begin{array}{ll}
\mathbf{D}=\mathbf{U S V}{ }^{T} & (\mathbf{U} \text { contains the left singular vectors/eigenvectors) } \\
& (\mathbf{V} \text { contains the right singular vectors/eigenvectors })
\end{array}
$$

- Rewrite as a sum of a minimum number of rank-1 matrices

$$
\mathbf{D}=\sum_{i=1}^{R} \sigma_{r} \mathbf{u}_{r} \circ \mathbf{v}_{r}
$$

Matrix SVD Properties

- Rank Decomposition:
- sum of min. number of rank-1 matrices

$$
\mathbf{D}=\sum_{r=1}^{R} \sigma_{r} \mathbf{u}_{r} \circ \mathbf{V}_{r}
$$

- Multilinear Rank Decomposition: $\mathbf{D}=\sum_{r_{1}=1}^{R_{1}} \sum_{r_{2}=1}^{R_{2}} \sigma_{r_{1} r_{2}} \mathbf{U}_{r_{1}} \circ \mathbf{V}_{r_{2}}$

Matrix in Machine Learning

Data often available in matrix form.

Matrix in Machine Learning

Data often available in matrix form.

Matrix in Machine Learning

Data often available in matrix form.

\approx dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

dictionary W

\approx dictionary learning low-rank approximation factor analysis latent semantic analysis

for dimensionality reduction (coding, low-dimensional embedding)

Matrix Decomposition in Machine Learninçar

for interpolation (collaborative filtering, image inpainting)

Basic Model of Matrix Decomposition קוֹA

Different types of constraints have been considered in previous works:

- Sparsity constraints: either on W or H (e.g., Hoyer, 2004; Eggert and Korner, 2004);
- Shape constraints on \mathbf{w}_{k}, e.g.:
- convex NMF: \mathbf{w}_{k} are convex combinations of inputs (Ding et al., 2010);
- harmonic NMF: \mathbf{w}_{k} are mixtures of harmonic spectra (Vincent et al., 2008).
- Spatial coherence or temporal constraints on \mathbf{h}_{k} : activations are smooth (Virtanen, 2007; Jia and Qian, 2009; Essid and Fevotte, 2013);
- Cross-modal correspondence constraints: factorisations of related modalities are related, e.g., temporal activations are correlated (Seichepine et al., 2013; Liu et al., 2013; Yilmaz et al., 2011);
- Geometric constraints: e.g., select particular cones $\mathcal{C}_{\mathbf{w}}$ (Klingenberg et al., 2009; Essid, 2012).

Matrix and Matrix Decomposition Aip

- ICA (Independent Component Analysis)
- SCA (Sparse Component Analysis)
- MCA (Morphological Component Analysis)
- NMF (Non-negative Factorization)

Principal Component Analysis

Principal Components

Objective Function:

$$
\max _{\mathbf{w}}\left(\mathbf{w}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{w}\right)
$$

- PCA is to look for a low dimensional projection in which the majority of signal energy is kept.
- Here "Principal" represents "Major" that the projected signal has the largest energy along the first principal direction (red line in the figure).

Principal Component Analysis

Assuming the data is real-valued $\left(\mathbf{v}_{n} \in \mathbb{R}^{F}\right)$ and centered $(\mathbb{E}[\mathbf{v}]=0)$,

- PCA returns a dictionary $W_{P C A} \in \mathbb{R}^{F \times K}$ such that the least squares error is minimized:

$$
\mathbf{W}_{P C A}=\min _{\mathbf{W}} \frac{1}{N} \sum_{n}\left\|\mathbf{v}_{n}-\hat{\mathbf{v}}_{n}\right\|_{2}^{2}=\frac{1}{N}\left\|\mathbf{V}-\mathbf{W} \mathbf{W}^{T} \mathbf{V}\right\|_{F}^{2}
$$

- A solution is given by:

$$
\mathbf{W}_{P C A}=\mathbf{E}_{1: K}
$$

where $\mathbf{E}_{1: K}$ denotes the K dominant eigenvectors of $\mathbf{C}_{\mathbf{v}}$:

$$
\mathbf{C}_{\mathbf{v}}=\mathbb{E}\left[\mathbf{v} \mathbf{v}^{T}\right] \approx \frac{1}{N} \sum_{n} \mathbf{v}_{n} \mathbf{v}_{n}
$$

PCA dictionary with $K=25$

red pixels indicate negative values

- data \mathbf{V} and factors \mathbf{W}, \mathbf{H} have nonnegative entries.
- nonnegativity of \mathbf{W} ensures interpretability of the dictionary, because patterns \mathbf{w}_{k} and samples \mathbf{v}_{n} belong to the same space.
- nonnegativity of \mathbf{H} tends to produce part-based representations, because subtractive combinations are forbidden.

Early work by Paatero and Tapper (1994), landmark Nature paper by Lee and Seung (1999)

NMF as a constrained minimization problem AlP

Minimise a measure of fit between \mathbf{V} and $\mathbf{W H}$, subject to nonnegativity:

$$
\min _{\mathbf{W}, \mathbf{H} \geq \mathbf{0}} D(\mathbf{V} \mid \mathbf{W} \mathbf{H})=\sum_{f_{n}} d\left([\mathbf{V}]_{f n} \mid[\mathbf{W} \mathbf{H}]_{f n}\right)
$$

where $d(x \mid y)$ is a scalar cost function, e.g.,

- squared Euclidean distance (Paatero and Tapper, 1994; Lee and Seung, 2001)
- Kullback-Leibler divergence (Lee and Seung, 1999; Finesso and Spreij, 2006)
- Itakura-Saito divergence (Févotte, Bertin, and Durrieu, 2009)
- α-divergence (Cichocki et al., 2008)
- β-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)
- Bregman divergences (Dhillon and Sra, 2005)
- and more in (Yang and Oja, 2011)

Regularisation terms often added to $D(\mathbf{V} \mid \mathbf{W H})$ for sparsity, smoothness, dynamics, etc.

- Block-coordinate update of \mathbf{H} given $\mathbf{W}^{(i-1)}$ and \mathbf{W} given $\mathbf{H}^{(i)}$.
- Updates of \mathbf{W} and \mathbf{H} equivalent by transposition:

$$
\mathbf{V} \approx \mathbf{W} \mathbf{H} \Leftrightarrow \mathbf{V}^{T} \approx \mathbf{H}^{T} \mathbf{W}^{T}
$$

- Objective function separable in the columns of \mathbf{H} or the rows of \mathbf{W} :

$$
D(\mathbf{V} \mid \mathbf{W H})=\sum_{n} D\left(\mathbf{v}_{n} \mid \mathbf{W} \mathbf{h}_{n}\right)
$$

Essentially left with nonnegative linear regression:

$$
\min _{\mathbf{h} \geq 0} C(\mathbf{h}) \stackrel{\text { def }}{=} D(\mathbf{v} \mid \mathbf{W h})
$$

Numerous references in the image restoration literature. e.g., (Richardson, 1972; Lucy, 1974; Daube-Witherspoon and Muehllehner, 1986; De Pierro, 1993)

What is tensor?

Some data can have more meaningful representation using multi-way arrays rather than matrices (two-way arrays).

Electroencephalography (EEG) data (Lee et al., 2007)

What is tensor?

AP

What is tensor?

Tensor Fibers
A|P

Tube (Mode-3)

Fibers

Tensor slices

Horizontal Slices

Frontal Slices
Lateral Slices

Tensor Unfolding

An Example of Tensor Unfolding

$$
\begin{aligned}
& \mathbf{A}_{(2)}=\left[\begin{array}{lll|l|l|l|l}
a_{111} & a_{211} & a_{311} & a_{112} & a_{212} & a_{312} \\
\hline a_{121} & a_{221} & a_{321} & a_{12} & a_{22} & a_{32} \\
\hline a_{131} & a_{231} & a_{31} & a_{12} & a_{222} & a_{32} \\
\hline a_{141} & a_{241} & a_{341} & a_{122} & a_{221} & a_{321}
\end{array}\right]
\end{aligned}
$$

Matrix Products

Matrix Outer Product:

The outer product of the tensors $\underline{\mathbf{Y}} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$ and $\underline{\mathbf{X}} \in \mathbb{R}^{J_{1} \times J_{2} \times \cdots \times J_{M}}$ is given by

$$
\begin{equation*}
\underline{\mathbf{Z}}=\mathbf{Y} \circ \mathbf{X} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N} \times J_{1} \times J_{2} \times \cdots \times J_{M}}, \tag{1.75}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{i_{1}, i_{2}, \ldots, i_{N}, j_{1}, j_{2}, \ldots, j_{M}}=y_{i_{1}, i_{2}, \ldots, i_{N}} x_{j_{1}, j_{2}, \ldots, j_{M}} . \tag{1.76}
\end{equation*}
$$

Matrix Kronecker Product:

The Kronecker product of two matrices $\mathbf{A} \in \mathbb{R}^{I \times J}$ and $\mathbf{B} \in \mathbb{R}^{T \times R}$ is a matrix denoted as $\mathbf{A} \otimes \mathbf{B} \in \mathbb{R}^{I T \times J R}$ and defined as (see the MATLAB function kron):

$$
\begin{align*}
& \mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccccc}
a_{11} & \mathbf{B} & a_{12} & \mathbf{B} & \cdots
\end{array} a_{1 J} \mathbf{B} 10\right. \text {. } \tag{1.80}\\
& =\left[a_{1} \otimes b_{1} a_{1} \otimes b_{2} a_{1} \otimes b_{3} \cdots a_{J} \otimes b_{R-1} a_{J} \otimes b_{R}\right] . \tag{1.81}
\end{align*}
$$

Matrix Products

Matrix Hadamard Product:

The Hadamard product of two equal-size matrices is the element-wise product denoted by $*$ (or.$*$ for MATLAB notation) and defined as

$$
\mathbf{A} \circledast \mathbf{B}=\left[\begin{array}{cccc}
a_{11} b_{11} & a_{12} b_{12} & \cdots & a_{1 J} b_{1 J} \tag{1.88}\\
a_{21} b_{21} & a_{22} b_{22} & \cdots & a_{2 J} b_{2 J} \\
\vdots & \vdots & \ddots & \vdots \\
a_{I 1} b_{I 1} & a_{I 2} b_{I 2} & \cdots & a_{I J} b_{I J}
\end{array}\right] .
$$

Matrix Khatri-Rao Product:

For two matrices $\mathbf{A}=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{J}\right] \in \mathbb{R}^{I \times J}$ and $\mathbf{B}=\left[\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{J}\right] \in \mathbb{R}^{T \times J}$ with the same number of columns J, their Khatri-Rao product, denoted by \odot, performs the following operation:

$$
\begin{align*}
\mathbf{A} \odot \mathbf{B} & =\left[\begin{array}{ll}
\boldsymbol{a}_{1} \otimes \boldsymbol{b}_{1} \boldsymbol{a}_{2} \otimes \boldsymbol{b}_{2} \cdots \boldsymbol{a}_{J} \otimes \boldsymbol{b}_{J}
\end{array}\right] \tag{1.89}\\
& =\left[\operatorname{vec}\left(\boldsymbol{b}_{1} \boldsymbol{a}_{1}^{T}\right) \operatorname{vec}\left(\boldsymbol{b}_{2} \boldsymbol{a}_{2}^{T}\right) \cdots \operatorname{vec}\left(\boldsymbol{b}_{J} \boldsymbol{a}_{J}^{T}\right)\right] \in \mathbb{R}^{I T \times J} . \tag{1.90}
\end{align*}
$$

Tensor Matrix Product

Definition 1.5 (mode- \boldsymbol{n} tensor matrix product) The mode-n product $\underline{\mathbf{Y}}=\underline{\mathbf{G}} \times{ }_{n}$ A of a tensor $\underline{\mathbf{G}} \in$ $\mathbb{R}^{J_{1} \times J_{2} \times \cdots \times J_{N}}$ and a matrix $\mathbf{A} \in \mathbb{R}^{I_{n} \times J_{n}}$ is a tensor $\underline{\mathbf{Y}} \in \mathbb{R}^{J_{1} \times \cdots \times J_{n-1} \times I_{n} \times J_{n+1} \times \cdots \times J_{N}}$, with elements

$$
\begin{equation*}
y_{j_{1}, j_{2}, \ldots, j_{n-1}, i_{n}, j_{n+1}, \ldots, j_{N}}=\sum_{j_{n}=1}^{J_{n}} g_{j_{1}, j_{2}, \ldots, J_{N}} a_{i_{n}, j_{n}} \tag{1.97}
\end{equation*}
$$

(a)

Tensor Matrix Product
(b)

(c)

$(7 \times 5 \times 8)$
(6×8)

II

$(7 \times 5 \times 6)$
\& Tensor Vector Contracted Product AiP

Special Form of Tensors

Rank-one tensor:

Examples of tensors with special forms

(a)

(b)

(c)

CP Approximation

$$
\begin{array}{rlrl}
\underline{\mathbf{X}} & \cong \sum_{r=1}^{R} \lambda_{r} \mathbf{b}_{r}^{(1)} \circ \mathbf{b}_{r}^{(2)} \circ \cdots \circ \mathbf{b}_{r}^{(N)} & & \mathbf{X}_{(1)}=\mathbf{A} \boldsymbol{\Lambda}(\mathbf{C} \odot \mathbf{B})^{T}+\mathbf{E}_{(1)} \\
& =\underline{\boldsymbol{\Lambda}} \times_{1} \mathbf{B}^{(1)} \times_{2} \mathbf{B}^{(2)} \cdots \times_{N} \mathbf{B}^{(N)} & & \mathbf{X}_{(2)}=\mathbf{B} \boldsymbol{\Lambda}(\mathbf{C} \odot \mathbf{A})^{T}+\mathbf{E}_{(2)} \\
& =\llbracket \underline{\boldsymbol{\Lambda}} ; \mathbf{B}^{(1)}, \mathbf{B}^{(2)}, \ldots, \mathbf{B}^{(N)} \rrbracket, & \mathbf{X}_{(3)}=\mathbf{C} \boldsymbol{\Lambda}(\mathbf{B} \odot \mathbf{A})^{T}+\mathbf{E}_{(3)}
\end{array}
$$

Alternative Representations of CP Decomposition/1P

(a)

$$
y_{i t q}=\sum_{j=1}^{J} a_{i j} b_{t j} c_{q j}+e_{i t q}
$$

(b)

$$
=\prod_{a_{1}}^{b_{1} c_{1}^{T}}+\ldots+\prod_{a_{J}}
$$

Alternative Representations of CP Decomposition/IP

(c)

(d)

$$
\mathbf{Y}_{q}=\mathbf{A} \mathbf{D}_{q} \mathbf{X}, \quad(q=1,2, \ldots, Q)
$$

Alternative Representations of CP Decomposition/1P

CP Approximation

```
Algorithm 1: Basic ALS for the CP decomposition of a
3rd-order tensor
    Input: Data tensor \(\underline{\mathbf{X}} \in \mathbb{R}^{I \times J \times K}\) and rank \(R\)
    Output: Factor matrices \(\mathbf{A} \in \mathbb{R}^{I \times R}, \mathbf{B} \in \mathbb{R}^{J \times R}, \mathbf{C} \in \mathbb{R}^{K \times R}\), and scaling
    vector \(\boldsymbol{\lambda} \in \mathbb{R}^{R}\)
    1: Initialize \(\mathbf{A}, \mathbf{B}, \mathbf{C}\)
    2: while not converged or iteration limit is not reached do
    3: \(\quad \mathbf{A} \leftarrow \mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})\left(\mathbf{C}^{\mathrm{T}} \mathbf{C} \circledast \mathbf{B}^{\mathrm{T}} \mathbf{B}\right)^{\dagger}\)
    4: Normalize column vectors of \(\mathbf{A}\) to unit length (by computing the
        norm of each column vector and dividing each element of a
        vector by its norm)
        5: \(\quad \mathbf{B} \leftarrow \mathbf{X}_{(2)}(\mathbf{C} \odot \mathbf{A})\left(\mathbf{C}^{\mathrm{T}} \mathbf{C} \circledast \mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\dagger}\)
        6: Normalize column vectors of \(\mathbf{B}\) to unit length
    7: \(\quad \mathbf{C} \leftarrow \mathbf{X}_{(3)}(\mathbf{B} \odot \mathbf{A})\left(\mathbf{B}^{\mathrm{T}} \mathbf{B} \circledast \mathbf{C}^{\mathrm{T}} \mathbf{C}\right)^{\dagger}\)
    8: Normalize column vectors of \(\mathbf{C}\) to unit length,
        store the norms in vector \(\boldsymbol{\lambda}\)
    : end while
    10: return \(\mathbf{A}, \mathbf{B}, \mathbf{C}\) and \(\boldsymbol{\lambda}\).
```


Tucker Approximation

$$
\underline{\mathbf{Y}}=\underline{\mathbf{G}} \times \times_{1} \mathbf{A} \times_{2} \mathbf{B} \times 3 \mathbf{C}+\underline{\mathbf{E}}=\llbracket \underline{\mathbf{G}} ; \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket+\underline{\mathbf{E}},
$$

Matrix Form of Tucker Decomposition:

$$
\begin{aligned}
& \mathbf{X}_{(1)} \approx \mathbf{A G}_{(1)}(\mathbf{C} \otimes \mathbf{B})^{\top}, \\
& \mathbf{X}_{(2)} \approx \mathbf{B G}_{(2)}(\mathbf{C} \otimes \mathbf{A})^{\top}, \\
& \mathbf{X}_{(3)} \approx \mathbf{C G}_{(3)}(\mathbf{B} \otimes \mathbf{A})^{\top} .
\end{aligned}
$$

(a) Tucker3

$$
y_{i t q}=\sum_{j=1}^{J} \sum_{r=1}^{R} g_{j r q} a_{i j} b_{t r}
$$

(b) Tucker2

(c) Tucker1

From Matrix SVD to Higher-order Case AIP

(a)
Eigenvector of $\mathbf{X}^{\mathrm{T}} \mathbf{X}$

$(J \times J)$
(b)

$(I \times J)$

$\xrightarrow[R_{3}]{I_{3}}$

$\left(I_{1} \times I_{2} \times I_{3}\right)$

Algorithm 2: Sequentially Truncated HOSVD (Vannieuwenhoven et al., 2012)

Input: N th-order tensor $\underline{\mathbf{X}} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}$ and approximation accuracy ε
Output: HOSVD in the Tucker format $\underline{\hat{\mathbf{X}}}=\llbracket \underline{\mathbf{S}} ; \mathbf{U}^{(1)}, \ldots, \underline{\mathbf{U}}^{(N)} \rrbracket$,
such that $\|\underline{\mathbf{X}}-\underline{\hat{\mathbf{X}}}\|_{F} \leqslant \varepsilon$
1: $\underline{\mathbf{S}} \leftarrow \underline{\mathbf{X}}$
2: for $n=1$ to N do
3: $\quad\left[\mathbf{U}^{(n)}, \mathbf{S}, \mathbf{V}\right]=$ truncated_svd $\left(\mathbf{S}_{(n)}, \frac{\varepsilon}{\sqrt{N}}\right)$
4: $\quad \underline{\mathbf{S}} \leftarrow \mathbf{V S}$
5: end for
6: $\underline{\mathbf{S}} \leftarrow \operatorname{reshape}\left(\underline{\mathbf{S}},\left[R_{1}, \ldots, R_{N}\right]\right)$
7: return Core tensor $\underline{\mathbf{S}}$ and orthogonal factor matrices $\mathbf{U}^{(n)} \in \mathbb{R}^{I_{n} \times R_{n}}$.

Algorithm 3: Randomized SVD (rSVD) for large-scale and low-rank matrices with single sketch (Halko et al., 2011)

Input: A matrix $\mathbf{X} \in \mathbb{R}^{I \times J}$, desired or estimated rank R, and oversampling parameter P or overestimated rank $\widetilde{R}=R+P$, exponent of the power method $q(q=0$ or $q=1)$
Output: An approximate rank- \widetilde{R} SVD, $\mathbf{X} \cong \mathbf{U S V}^{\mathrm{T}}$, i.e., orthogonal matrices $\mathbf{U} \in \mathbb{R}^{I \times \widetilde{R}}, \mathbf{V} \in \mathbb{R}^{J \times \widetilde{R}}$ and diagonal matrix $\mathbf{S} \in \mathbb{R}^{\widetilde{R} \times \widetilde{R}}$ with singular values
1: Draw a random Gaussian matrix $\boldsymbol{\Omega} \in \mathbb{R}^{J \times \tilde{R}}$,
2: Form the sample matrix $\mathbf{Y}=\left(\mathbf{X X}^{\mathrm{T}}\right)^{q} \mathbf{X} \boldsymbol{\Omega} \in \mathbb{R}^{I \times \tilde{R}}$
3: Compute a QR decomposition $\mathbf{Y}=\mathbf{Q R}$
4: Form the matrix $\mathbf{A}=\mathbf{Q}^{\mathrm{T}} \mathbf{X} \in \mathbb{R}^{\tilde{R} \times J}$
5: Compute the SVD of the small matrix \mathbf{A} as $\mathbf{A}=\hat{\mathbf{U}} \mathbf{S V}^{\mathrm{T}}$
6: Form the matrix $\mathbf{U}=\mathbf{Q} \hat{\mathbf{U}}$.

```
Algorithm 4: Higher Order Orthogonal Iteration (HOOI)
(De Lathauwer et al., 2000b; Austin et al., 2015)
    Input: \(N\) th-order tensor \(\underline{\mathbf{X}} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{N}}\) (usually in Tucker/HOSVD
        format)
    Output: Improved Tucker approximation using ALS approach, with
        orthogonal factor matrices \(\mathbf{U}^{(n)}\)
        : Initialization via the standard HOSVD (see Algorithm 2)
    2: repeat
    3: \(\quad\) for \(n=1\) to \(N\) do
    4: \(\quad \underline{\mathbf{Z}} \leftarrow \underline{\mathbf{X}} \times_{p \neq n}\left\{\mathbf{U}^{(p) \mathrm{T}}\right\}\)
    5: \(\quad \mathbf{C} \leftarrow \mathbf{Z}_{(n)} \mathbf{Z}_{(n)}^{\mathrm{T}} \in \mathbb{R}^{R \times R}\)
    6: \(\quad \mathbf{U}^{(n)} \leftarrow\) leading \(R_{n}\) eigenvectors of \(\mathbf{C}\)
        end for
        8: \(\quad \underline{\mathbf{G}} \leftarrow \underline{\mathbf{Z}} \times_{N} \mathbf{U}^{(N)} \mathrm{T}\)
    9: until the cost function \(\left(\|\underline{\mathbf{X}}\|_{F}^{2}-\|\underline{\mathbf{G}}\|_{F}^{2}\right)\) ceases to decrease
    10: return \(\llbracket \underline{\mathbf{G}} ; \mathbf{U}^{(1)}, \mathbf{U}^{(2)}, \ldots, \mathbf{U}^{(N)} \rrbracket\)
```


Nonnegative Tensor Factorization

Definition (NTF). Given an N-th order tensor $\underline{\mathbf{Y}} \in \mathbb{R}^{I_{1} \times I_{2} \times \ldots \times I_{N}}$ and a positive integer J, factorize $\underline{\mathbf{Y}}$ into a set of N nonnegative component matrices $\mathbf{A}^{(n)}=\left[\mathbf{a}_{1}^{(n)}, \mathbf{a}_{2}^{(n)}, \ldots, \mathbf{a}_{J}^{(n)}\right] \in \mathbb{R}^{I_{n} \times J},(n=1,2, \ldots, N)$ representing the common (loading) factors, that is,

$$
\begin{gathered}
\underline{\mathbf{Y}}=\underline{\hat{\mathbf{Y}}}+\underline{\mathbf{E}}=\sum_{j=1}^{J} \mathbf{a}_{j}^{(1)} \circ \mathbf{a}_{j}^{(2)} \circ \ldots \circ \mathbf{a}_{j}^{(N)}+\underline{\mathbf{E}}= \\
\underline{\mathbf{I}} \times{ }_{1} \mathbf{A}^{(1)} \times{ }_{2} \mathbf{A}^{(2)} \cdots \times_{N} \mathbf{A}^{(N)}+\underline{\mathbf{E}}=\llbracket \mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \ldots, \mathbf{A}^{(N)} \rrbracket+\underline{\mathbf{E}}
\end{gathered}
$$

with $\left\|\mathbf{a}_{j}^{(n)}\right\|_{2}=1$ for $n=1,2, \ldots N-1$ and $j=1,2, \ldots, J$.

Matrix Nonnegative Least-Squares (MNLS)AIP

```
Algorithm 2: Nesterov-type algorithm for MNLS
    Input: \(\mathbf{X} \in \mathbb{R}^{m \times k}, \mathbf{B} \in \mathbb{R}^{k \times n}, \mathbf{A}_{0} \in \mathbb{R}^{m \times n}\), tol \(>0\).
    1 Compute \(\mathbf{W}=-\mathbf{X B}, \mathbf{Z}=\mathbf{B}^{T} \mathbf{B}\).
    2 Compute \(L=\max (\operatorname{eig}(\mathbf{Z})) \quad \mu=\min (\operatorname{eig}(\mathbf{Z}))\).
    \({ }_{3}\) Set \(\mathbf{Y}_{0}=\mathbf{A}_{0}, \beta=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, k=0\).
    4 while (1) do
        \(\nabla f\left(\mathbf{Y}_{k}\right)=\mathbf{W}+\mathbf{A}_{k} \mathbf{Z}\);
        if \(\left(\max \left(\left|\nabla f\left(\mathbf{Y}_{k}\right) \circledast \mathbf{Y}_{k}\right|\right)<\right.\) tol \()\) then
        break;
        else
            \(\mathbf{A}_{k+1}=\left[\mathbf{Y}_{k}-\frac{1}{L} \nabla f\left(\mathbf{Y}_{k}\right)\right]_{+} ;\)
            \(\mathbf{Y}_{k+1}=\mathbf{A}_{k+1}+\beta\left(\mathbf{A}_{k+1}-\mathbf{A}_{k}\right) ;\)
            \(k=k+1 ;\)
12 return \(\mathrm{A}_{k}\).
```


The Algorithm

The objective function: $f_{\boldsymbol{x}}(\mathbf{A}, \mathrm{B}, \mathrm{C})=\frac{1}{2}\left\|\mathbf{X}_{\boldsymbol{A}}-\mathbf{A}(\mathbf{C} \odot \mathbf{B})^{T}\right\|_{F}^{2}$

$$
\begin{aligned}
& =\frac{1}{2}\left\|\mathbf{X}_{\mathbf{B}}-\mathbf{B}(\mathbf{C} \odot \mathbf{A})^{T}\right\|_{F}^{2} \\
& =\frac{1}{2}\left\|\mathbf{X}_{\mathbf{C}}-\mathbf{C}(\mathbf{B} \odot \mathbf{A})^{T}\right\|_{F}^{2}
\end{aligned}
$$

```
Algorithm 4: Nesterov-based AO NTF
    Input: \(\mathcal{X}, \mathbf{A}_{0} \geq \mathbf{0}, \mathbf{B}_{0} \geq \mathbf{0}, \mathbf{C}_{0} \geq \mathbf{0}, \lambda\), tol.
    Set \(k=0\)
    2 while (terminating condition is FALSE) do
        \(\mathbf{W}_{\mathbf{A}}=-\mathbf{X}_{\mathbf{A}}\left(\mathbf{C}_{k} \odot \mathbf{B}_{k}\right)-\lambda \mathbf{A}_{k}, \mathbf{Z}_{\mathbf{A}}=\left(\mathbf{C}_{k} \odot \mathbf{B}_{k}\right)^{T}\left(\mathbf{C}_{k} \odot \mathbf{B}_{k}\right)+\lambda \mathbf{I}\)
        \(\mathbf{A}_{k+1}=\) Nesterov_MNLS \(\left(\mathbf{W}_{\mathbf{A}}, \mathbf{Z}_{\mathbf{A}}, \mathbf{A}_{k}, \lambda\right.\), tol \()\)
        \(\mathbf{W}_{\mathbf{B}}=-\mathbf{X}_{\mathbf{B}}\left(\mathbf{C}_{k} \odot \mathbf{A}_{k+1}\right)-\lambda \mathbf{B}_{k}, \mathbf{Z}_{\mathbf{B}}=\left(\mathbf{C}_{k} \odot \mathbf{A}_{k+1}\right)^{T}\left(\mathbf{C}_{k} \odot \mathbf{A}_{k+1}\right)+\lambda \mathbf{I}\)
        \(\mathbf{B}_{k+1}=\) Nesterov_MNLS \(\left(\mathbf{W}_{\mathbf{B}}, \mathbf{Z}_{\mathbf{B}}, \mathbf{B}_{k}, \lambda\right.\), tol \()\)
        \(\mathbf{W}_{\mathbf{C}}=-\mathbf{X}_{\mathbf{C}}\left(\mathbf{A}_{k+1} \odot \mathbf{B}_{k+1}\right)-\lambda \mathbf{C}_{k}, \mathbf{Z}_{\mathbf{C}}=\left(\mathbf{A}_{k+1} \odot \mathbf{B}_{k+1}\right)^{T}\left(\mathbf{A}_{k+1} \odot \mathbf{B}_{k+1}\right)+\lambda \mathbf{I}\)
        \(\mathbf{C}_{k+1}=\) Nesterov_MNLS \(\left(\mathbf{W}_{\mathbf{C}}, \mathbf{Z}_{\mathbf{C}}, \mathbf{C}_{k}, \lambda\right.\), tol \()\)
        \(\left(\mathbf{A}_{k+1}, \mathbf{B}_{k+1}, \mathbf{C}_{k+1}\right)=\operatorname{Normalize}\left(\mathbf{A}_{k+1}, \mathbf{B}_{k+1}, \mathbf{C}_{k+1}\right)\)
        \(\left(\mathbf{A}_{k+1}, \mathbf{B}_{k+1}, \mathbf{C}_{k+1}\right)=\operatorname{Accelerate}\left(\mathbf{A}_{k+1}, \mathbf{A}_{k}, \mathbf{B}_{k+1}, \mathbf{B}_{k}, \mathbf{C}_{k+1}, \mathbf{C}_{k}, k\right)\)
        \(k=k+1\)
    return \(\mathbf{A}_{k}, \mathbf{B}_{k}, \mathbf{C}_{k}\).
```

